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ABSTRACT

A common assumption in wave-propagation problems is
that the subsurface is approximately an acoustic medium.
Under this assumption, important wave phenomena such as
S-waves are not included. Due to the increase in computational
power in recent years, the acoustic assumption may be left be-
hind and replaced by the more physically correct elastic
assumption. Time-lapse seismic data contain information about
changes in the subsurface due to the production of hydrocar-
bons or injection of CO2. Full-waveform inversion (FWI) is an
inverse method that can be used to quantify these time-lapse
changes in the subsurface. Using a 3D isotropic elastic imple-
mentation of the FWI method, we studied two strategies for
performing time-lapse FWI. We used synthetic ocean-bottom
multicomponent seismic time-lapse data to estimate changes in
the P- and S-wave velocity models. A sensitivity analysis in
which the sensitivities with respect to the magnitude and
physical size of the time-lapse anomalies and the noise level
in the data was performed. The strategy focusing on explaining
the data differences between the baseline and monitor data sets
provided fewer artifacts in the inverted elastic models than the
strategy that tried to explain the full monitor data set, and it
was therefore preferable. The data-difference strategy depends
on good repeatability in the time-lapse data sets and sufficient
convergence of the inversion of the baseline data set.

INTRODUCTION

A common assumption in wave propagation problems is that
the subsurface is approximately an acoustic medium. Under this as-
sumption, it is sufficient to use the acoustic wave equation (Aki and
Richards, 2002) to model waves propagating through the medium

of interest. Important wave phenomena such as S-waves are not in-
cluded in the acoustic wave equation. In parameter estimation prob-
lems, the acoustic assumption may in the worst case lead to wrongly
estimated models (Barnes and Charara, 2009; Raknes and
Arntsen, 2014a). Due to the increase in computational power in re-
cent years, we now can use the elastic wave equation (or other wave
equations that involve more accurate physics) to model wave propa-
gation in a medium. This equation is more complicated to solve than
the acoustic wave equation, resulting in higher computational cost.
More importantly, this leads to better agreement between simulated
data and the real world wavefields, which may improve the results
of methods relying on waveform fitting. Furthermore, it is now pos-
sible to numerically solve the elastic wave equations in a full 3D
setup with acceptable computing times.
Time-lapse seismic data contain information about changes in the

subsurface and have proven to be an effective tool in reservoir im-
aging and for monitoring of injected CO2 in the subsurface (Biondi
et al., 1996; Lumley et al., 2003). Conventional methods for quan-
tifying time-lapse effects assume that the monitor model can be ap-
proximated by a linear perturbation of the baseline model (Greaves
and Fulp, 1987; Landrø et al., 1999). This assumption is easily vio-
lated in cases in which there are strong changes in the rock proper-
ties between the baseline and monitor parameter models. Therefore,
more robust time-lapse analysis methods are required.
The full-waveform inversion (FWI) method is a technique for es-

timating parameters affecting wave propagation (Tarantola, 1984;
Mora, 1987). The method has been applied on synthetic and real data
sets with success (Virieux and Operto, 2009). Because FWI in gen-
eral is computer intensive and therefore time consuming, the method
has mainly been applied using a 2D computational setup. Under these
conditions, several modifications must be made to the real data sets to
minimize 3D effects. The modifications may introduce artifacts in the
inverted parameter models (Auer et al., 2013). Therefore, a 3D setup
is preferable.
Increases in computational power over the last decade have made

it possible to perform FWI using full 3D computational grids.
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Sirgue et al. (2008) use a frequency-domain implementation to
demonstrate FWI in 3D using a synthetic data set, whereas Vigh and
Starr (2008) use a time-domain plane wave implementation and
synthetic and real data sets in 3D. Plessix (2009) uses a frequency-
domain implementation on synthetic and real ocean-bottom cable
(OBC) data sets. Sirgue et al. (2009) use 3D FWI on a wide-azimuth
real OBC data set from the Valhall area. Abubakar et al. (2011) use
the contrast-source method in 3D to invert synthetic data sets. The
previous examples assumed purely acoustic media, such that the
acoustic wave equation was used to approximate the waves in the
media. Recent developments have included more complicated wave
phenomena in the modeling. Warner et al. (2013) apply a full 3D
anisotropic pseudoacoustic implementation of FWI on a multi-
component ocean-bottom survey over the Tommeliten field in the
North Sea. Butzer et al. (2013) apply a 3D isotropic elastic FWI on a
small-scale cross-well acquisition geometry using synthetic and real
data sets. Vigh et al. (2014) apply the same 3D wave equation using
synthetic and real OBC data sets.
The reconstruction of time-lapse anomalies using FWI is a two-

step procedure. The first step is the estimation of the baseline
model, and the second step is the estimation of the monitor model.
In the literature, at least three different strategies for performing
time-lapse FWI (TLFWI) have been suggested (Zheng et al., 2011).
The three strategies vary in how the second step is performed. The
first strategy is formed by inverting independently for the baseline
and monitor models starting from the same initial model. In cases in
which the time-lapse changes are local, this is not a good idea from
a computational point of view because FWI will use many iterations
to explain already known events that are included in the inverted
baseline model. The second strategy is therefore formed by using
the inverted baseline model as the initial model for the monitor in-
version. This strategy is called the sequential strategy. The third
strategy, called the data-difference strategy, is formed by modifying
the monitor data set such that the inversion tries to explain the true
time-lapse data differences (Watanabe et al., 2004). The 2D imple-
mentations of the three strategies have been applied on the synthetic
and real data sets with success (Zheng et al., 2011; Routh et al.,
2012; Queißer and Singh, 2013; Zhang et al., 2013; Raknes and
Arntsen, 2014a).
Even though TLFWI has been applied on the synthetic and real

data sets, the advantages and disadvantages for the different time-
lapse strategies are not well understood, particularly not in 3D. Be-
cause the number of iterations should be held to a minimum in 3D,
we study the sequential and data-difference time-lapse strategies us-
ing a 3D isotropic elastic implementation of FWI. We use synthetic
ocean-bottom multicomponent seismic time-lapse data to estimate
time-lapse changes in the P- and S-wave velocity models. We per-
form a sensitivity analysis in which the sensitivities with respect to
the magnitude and physical size of the time-lapse anomalies and the
noise level in the data are studied. We find that both strategies are
able to reveal the time-lapse anomalies, but the sequential strategy
introduces more artifacts than the data-difference strategy in all ex-
amples. Hence, inverting for the data differences is preferred as long
as the inverted baseline model is sufficiently close to the true base-
line model, and the repeatability is good in the data sets.

THEORY AND METHODOLOGY

The theory that underlies FWI has been derived several times
using different formulations. Here, we present only the results that

are required to understand how our implementation works, and
which assumptions we made during the implementation of the
method. We refer to Pratt (1999), Fichtner et al. (2006), and Virieux
and Operto (2009) for more details about the method.

Full-waveform inversion

The overall goal for FWI is to find a parameter model m that
produces modeled data q that is close to some measured data d.
The foundation for the method is the assumption that synthetic data
q can be generated using a numerical wave equation. Let L be the
numerical wave operator that mapsm from the model space into the
data space. Then, the synthetic data can be generated as

LðmÞ ¼ q: (1)

If the inverse operator of L, that is, the mapping from the data space
into the model space, exists, then the solution to the problem is
given as

m ¼ L−1ðdÞ; (2)

where L−1 is the inverse operator. In practice, however, it is not
possible to find an explicit expression for the inverse operator.
The standard way of solving the inverse problem is to define a

measure, denoted as ΨðmÞ, between q and d. This measure is often
called the objective (or misfit) functional. We require that the sol-
ution of the problem, that is, the point where q and d are equal, is an
extreme point for ΨðmÞ. Hence, the solution to the problem can be
expressed as

m 0 ¼ argmin
m

ΨðmÞ; (3)

wherem 0 is the model we are searching for. The inverse problem in
equation 3 is nonlinear and ill posed.
The search for the extreme points of ΨðmÞ is done using an iter-

ative optimization algorithm, written as

mkþ1 ¼ mk − αkH−1
k gk; (4)

where αk > 0 is the step length, H−1
k is the inverse Hessian matrix,

and gk is the gradient of ΨðmÞ with respect to m at step k. To start
the algorithm, an initial model m0 is required, and the algorithm is
run until some convergence criteria are fulfilled.
In practice, the inverse Hessian matrix in equation 4 is compli-

cated to compute because it involves second-order derivatives of the
objective functional. To overcome this problem, we use the limited-
memory Broyden, Fletcher, Goldfarb, and Shanno (L-BFGS) algo-
rithm (Nocedal andWright, 2006), which is a quasi-Newton method
that tries to estimate the inverse Hessian matrix using a predefined
number of gradients from previous iterations.

Time-lapse full-waveform inversion

The purpose of TLFWI is to reveal directly changes over time in
the parameter models. Thus, at least two inversions must be per-
formed, and the time-lapse images are obtained by subtracting
the inverted parameter models obtained from each of the individual
inversions. We present two time-lapse strategies that are different in
the way the monitor inversion is performed.
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We assume that we have two multicomponent data sets dbase and
dmon, where dbase and dmon are the data sets from the baseline and
monitor surveys, respectively. The data sets are assumed to have
been acquired using identical source-receiver geometries and source
functions. In this sense, the repeatability of the data sets should
be good.
The starting point in TLFWI is the inversion for the baseline data

set. For the baseline inversion, we use the least-squares objective
functional

ΨðmÞ ¼ 1

2

X
ðs;rÞ∈S

����W
��

qp
qv

�
−
�
dp
dv

������
2

; (5)

where S is the discrete set of all receiver and source enumerations,
W is a data weighting matrix, qp ¼ qpðm; xr; xsÞ is the modeled
pressure data for a source at position xs and receiver at xr for source
s and receiver r, qv ¼ qvðm; xr; xsÞ is the modeled particle velocity
data at the same position, dp ¼ dpðm; xr; xsÞ is the measured pres-
sure data, and dv ¼ dvðm; xr; xsÞ is the measured particle velocity
data at the same position.
It is important to let the pressure and particle velocity data con-

tribute equally to the objective functional. By considering the units
of the data components, the scale matrix in equation 5 is given as

W ¼
�
I1 0

0 ρVPI3

�
; (6)

where I1 is a 1 × 1 identity matrix, I3 is a 3 × 3 identity matrix, and
ρ and VP are the density and P-wave values at the receiver positions,
respectively.
If we assume that the time-lapse changes are local and that the

inverted baseline model is close enough to the true baseline model,
it is best to use the inverted baseline model as an initial model for
the monitor inversion, instead of using the same initial model for
both. Thus, the first time-lapse strategy is formed by following this
assumption, in which the objective functional in equation 5 is used
in the monitor inversion. In the following, this scheme is called the
sequential strategy (Figure 1a).
The time-lapse changes sought for may be small, and in some

cases, the total error from the modeling and inversion is bigger than
the actual time-lapse changes. By considering the error sources be-
tween the time-lapse data sets, some of the error sources can be
avoided. Let d be one of the components from the recorded data
set. By applying L in equation 1 on a given model m, we may as-
sume that

d ¼ LðmÞ þ εnðmÞ þ εs þ εr; (7)

where εnðmÞ is the numerical error, εs is a static error, and εr is the
random error. The numerical error is due to an imperfect forward
operator in addition to an imperfect model. In real data sets, the
static error term is a time-shift error that is constant in the data sets
and easy to remove. Therefore, we assume that εs is equal for all
time-lapse data. The random error corresponds to observational er-
rors such as noise from other vessels in the acquisition area, noise
from the water surface waves, and differences in the acquisition
equipment, among others. The magnitude of the different error
sources may vary for different source and receiver geometries.

By modifying all components in the measured monitor data set as
follows (Zheng et al., 2011):

d̂mon ¼ qbase þ ðdmon − dbaseÞ; (8)

we observe, by using the assumption in equation 7 for dmon and
dbase, that

d̂mon ¼ LðmmonÞ þ ðεnðmmonÞ − εnðmbaseÞÞ
þ ðεr;mon − εr;baseÞ

¼ LðmmonÞ þ Δεn þ Δεr: (9)

Thus, by comparing with the assumption in equation 7, εs is re-
moved from this new data set and we are left with the differences
in the numerical and random error terms. The consequence of the
modification is that the monitor inversion does not try to explain the
error from an imperfect inverted baseline model because this error is
removed in the new data set by the Δεn term. If we assume that Δεn
and Δεr are small compared with the time-lapse data differences,
the most important consequence of the modification is that the mon-
itor inversion focuses on explaining the true data differences. The
objective functional for the monitor inversion is

ΨðmÞ ¼ 1

2

X
ðs;rÞ∈S

����W
��

qp
qv

�
−
�
d̂p
d̂v

������
2

; (10)

with W as given in equation 6. The initial model for the monitor
inversion is, as above, the inverted baseline model. In the following,
this scheme is called the data-difference strategy (Figure 1b).

Implementation

Modeling

We assume that the subsurface is an isotropic elastic medium, so
that L in equation 1 is the 3D isotropic elastic wave equation (Aki
and Richards, 2002). Numerically, we solve the equation using a 3D
implementation of the time-domain staggered-grid finite difference
method described in Virieux (1986), in which we use high-order
spatial differential operators (Holberg, 1987). We use regular cubic
grids in which the source function is located at one single point in
the grid. To simulate an unbounded half-space (nonreflecting boun-
daries), we use a 3D implementation of the perfectly matched layer

Figure 1. Schematic workflow of TLFWI. (a) The sequential strat-
egy and (b) the data-difference strategy.

3D elastic time-lapse FWI R305

D
ow

nl
oa

de
d 

09
/0

3/
15

 to
 1

29
.2

41
.6

9.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



absorbing boundary conditions (Berenger, 1994; Zhen et al., 2009).
The reflecting sea surface at the top of the model is approximated
using the method described in Mittet (2002).

Gradient computation

The crucial step in FWI is the computation of the gradient in
equation 4. Using the adjoint state method (Tarantola, 1984; Mora,
1987), the gradients for the P-wave VP and S-wave VS model for a
single shot are given as (Mora, 1987)

gp ¼ −2ρVP

Z
T
ð∇ · ufÞð∇ · ubÞdt; (11)

gs ¼ −2ρVS

Z
T
½∇uf∶ð∇ub þ ð∇ubÞTÞ

− 2ð∇ · ufÞð∇ · ubÞ�dt; (12)

where uf ¼ ufðx; tÞ is the particle displacement vector for the for-
ward field propagating from the source position, ub ¼ ubðx; tÞ is the
particle displacement vector for the backward field propagating
from the receiver positions, ρ ¼ ρðxÞ is the density, VP ¼ VPðxÞ
is the P-wave velocity, and VS ¼ VSðxÞ is the S-wave velocity.
In the above equations, ∇ui is the Jacobian matrix and “:” is the
Frobenius matrix inner product operator.
From equations 11 and 12, we observe that the VP gradient de-

pends only on normal stresses, whereas the VS gradient depends on
normal and shear stresses. From a computational point of view, we
observe that to compute the gradients, snapshots of the wavefields at
each time step are required for the forward and backward propa-

gated wavefields. In two dimensions, a normal procedure is to store
the required wavefields during the forward modeling. In three di-
mensions, however, this is not possible due to the extreme amounts
of disk space needed when working on normal-sized models.
To overcome this problem, we need to reconstruct the forward

wavefields in equations 11 and 12 when they are needed. During
the forward modeling, we store the wavefields at the boundaries of
the grid, i.e., all six sides of the computational cube. In addition, we
save the last snapshot of all the wavefields in the complete model at
the last time step, such that waves inside the model are not lost when
the reconstruction starts. When we compute the backward propagat-
ing wavefields, we reconstruct the forward propagated wavefields
using the saved wavefields at the boundaries (McMechan, 1983).
The crosscorrelation in equations 11 and 12 is computed during
the time stepping of the two equations. Thus, the gradient compu-
tation is twice as costly as the forward modeling itself. To conclude,
to compute the modeled data and the gradients, we need to numeri-
cally solve the elastic wave equation three times.

Algorithm complexity

Let ni be the number of grid points on the spatial axis i, and as-
sume that ni ¼ n for an arbitrary number n. The computational cost
of performing the forward modeling and the gradient computation
for a single shot is Oðn3 · ntÞ, where nt is the number of time steps.
Because we only store the boundaries for the reconstruction of the
forward wavefield, the storage needed for this operation is Oðn2 ·
ntÞ for a single shot. As a result, if ns is the number of shots in the
data sets, the total computational cost of our implementation is
Oðn3 · nt · nsÞ, and the necessary storage is Oðn2 · nt · nsÞ. Thus,
as the model size increases, the computational cost and the required
storage increase severely.

RESULTS

We study the behavior of the two time-lapse
strategies using a synthetic model adapted from
the SEG/EAGE overthrust model (Figure 2). Us-
ing this model, the sensitivity with respect to
noise, the magnitude of time-lapse anomaly,
and the physical size of the time-lapse anomaly
are studied. For the first two test cases, the target
zone is a channel system at 500–600-m depth, in
which a large time-lapse effect in the whole chan-
nel system is introduced (Figure 2c). For the third
test case, a small and local time-lapse effect con-
sisting of two anomalies in the channel system is
used (Figure 2d). For all tests, the density as-
sumes the constant value of 1000 kg∕m3.
The size of each grid cell for the model is

25 × 25 × 25 m3, resulting in a computational
grid of 65 × 190 × 190 grid points. Thus, the to-
tal number of grid points is 2,346,500 for each
parameter model. To avoid numerical aliasing,
the source signature is a Ricker wavelet with
center frequency of 6.0 Hz. We assume that
the source signature is known, such that the same
signature is used both to generate the data and in
the inversion. The initial model (Figure 3) is

a)

b)

c)

d)

Figure 2. The true models: (a) VP, (b) VS, (c) large time-lapse effect, and (d) small time-
lapse effect. The position of the slices is indicated in the plots and is projected to the
boundaries of the cubes.
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made by smoothing the true models using a triangle smoothing op-
erator.
The relative time-lapse changes in the parameter models in a real

setting may be as small as 1%. Such small changes may be difficult
to observe in seismic time-lapse data, and thus difficult to invert for.
To study the sensitivity of TLFWI with respect to the magnitude of
the time-lapse effect, we use monitor models in which the VP and
VS velocities in the channel system are changed with 1%, 5%, and
10%, respectively. The changes in magnitude for the three cases are
as follows:

1) 1%: 0–30 m∕s for VP and 0–20 m∕s for VS,
2) 5%: 0–152 m∕s for VP and 0–96 m∕s for VS,
3) 10%: 0–304 m∕s for VP and 0–191 m∕s for VS.

We simulate a realistic OBC setup, in which 16 multicomponent
cables with a length of 4 km are put on the seafloor. The crossline
distance between each cable is 250 m, and the inline distance be-
tween each receiver is 25 m. The total number of receivers in the
grid is 2560. We perform 441 shots on a square
grid with a shot sampling of 125 m in both hori-
zontal directions. The source depth is 25 m.

Data without noise

For monitoring purposes, it is important to ob-
tain a good estimate of the baseline model because
the model is used as the starting model for the
monitor inversion, and thus for the reconstruction
of the time-lapse anomalies. We invert simultane-
ously for VP and VS, and because the method is
implemented in the time domain, all frequencies
are included in the inversion. In addition, the full
offset range is used in the inversion. Hence, one
inversion run is performed to estimate the baseline
VP and VS models.
The inverted baseline models for VP and VS

are given in Figure 4a and 4b, respectively. We
observe that the inversion is able to reveal the
channel system and in general sharpen the initial
model. The VS model is sharper than the VP

model, which is expected due to the lower wave
velocities for the S-waves. The inversion is not
able to estimate sharp edges, and in these areas
oscillations are clearly visible. This behavior can
be explained by the relatively low frequencies
used in the inversion. The quality of the inverted
baseline models can be visualized using the nor-
malized velocity error, given as

Verr ¼ ðV true − V invÞ∕V true: (13)

Figure 4c and 4d shows the normalized error for
VP and VS, respectively. We observe that the er-
ror is smaller in the center of the model than at
the edges of the model and that the error is at the
largest in the bottom part of the model. This is
expected because information about these areas
is not present in the data.
The inverted time-lapse models for VP and VS

for the two time-lapse strategies are given in Fig-

ures 5 and 6, respectively. The results show that the amount of ar-
tifacts is higher in the sequential strategy than in the data-difference
strategy. For the 1% change, it is difficult to distinguish the time-
lapse effects and the artifacts, particularly for the VS model, for the
sequential strategy. The artifacts are similar for the 5% and 10%
changes, but because the magnitude of the time-lapse changes is
higher, the artifacts are not dominant to the same extent. Because
no noise is added in the data, the artifacts are due to the fact that the
monitor inversion is trying to update the baseline model in the areas
in which the time-lapse anomaly is placed, in addition to further
update the areas of the model that were not well resolved in the
baseline inversion. For the data-difference strategy, however, the er-
ror from the imperfect inverted baseline model is included in the
new monitor data set (see equation 9), and therefore the monitor
inversion is not trying to explain the nonperfect inverted baseline
model. In Figure 7, the difference between the baseline and monitor
data sets is shown for the 1% case. From this figure, we see that the
time-lapse difference for the sequential strategy is far away from the

a) b)

Figure 3. The initial model for the baseline inversion: (a) VP and (b) VS.

a) c)

b) d)

Figure 4. (a) Inverted VP baseline model using data without noise, (b) inverted VS base-
line model using data without noise, (c) normalized VP error, and (d) normalized VS
error (see equation 13).
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true time-lapse difference, whereas the data-difference strategy is
close to the true difference. By comparing the objective functionals
(Figure 8) for the two strategies, we observe that the data-difference
strategy reduces the objective functional more than the sequential
counterpart, which is a result of the above-mentioned error present
in the latter strategy.

Data with noise

We define the signal-to-noise ratio (S/N) as S∕N ¼ rmsd∕rmsn,
in which rmsd and rmsn are the root-mean-square values of the
noise-free data and the noise, respectively. To simulate real noise,
we create a data set with pure (pseudo-) random noise. A Gaussian
distribution that uses a seed as input is used to generate the noise. To
ensure that the noise is not repeated in the shots, different seeds are
used for each shot in the baseline and monitor data sets. To color the
noise, the noise data set is filtered using a bandpass filter with a
window of 2–10 Hz before it is added to the data.
We use two noise levels to study the sensitivity with respect to the

noise. The weak noise data sets are made by using S∕N ¼ 5.0, and
the strong noise data sets are made by using S∕N ¼ 2.0. Figure 9

shows the different S/Ns for a pressure recording from the baseline
data set, whereas Figure 10 shows the time-lapse data differences
for the two S/Ns. We observe that with S∕N ¼ 2.0, the time-lapse
data difference is more or less completely distorted (Figure 10b),
whereas with S∕N ¼ 5.0, it is possible to see some parts of the
time-lapse data difference, particularly between 1.0 and 1.5 s (Fig-
ure 10c). Because the 1% time-lapse model introduced a lot of ar-
tifacts for the sequential strategy for noise-free data, we use the 5%
time-lapse model in the tests that follow.
The inverted time-lapse images for VP are given in Figure 11, and

those for VS are given in Figure 12. We observe that as the noise
level is increased the amount of artifacts are increased as well,
which is expected. As in the noise-free examples, there are fewer
artifacts with the data-difference strategy than with the sequential
strategy The reason for the success of TLFWI for S∕N ¼ 2.0 is
due to the fact that when data from all the shots are summed to-
gether in the stacking of the global gradient, the time-lapse infor-
mation is repeated and thus dominates compared with the random
noise.

Small-sized time-lapse anomaly

The spatial size of the time-lapse anomaly
studied so far has been large. To test if TLFWI
is able to resolve small spatial changes, we now
use a model in which the time-lapse anomaly is
two relatively small anomalies located in the
channel system (Figures 2d and 13). The distance
between the two anomalies is 500 m, and the
sizes of the anomalies are approximately 150 m
in all three directions. To simulate a real-world
time-lapse anomaly, data with S∕N ¼ 2.0 are
used, and the magnitude of the time-lapse
anomaly is 5%.
From the final inverted models for the two

time-lapse strategies in Figures 14 and 15, we ob-
serve that both strategies are able to detect both
time-lapse anomalies. As in the previous exam-
ples, the sequential strategy introduces several
artifacts that can be interpreted as time-lapse
anomalies. The magnitudes of the artifacts are
of the same order as the time-lapse anomalies
sought for. The data-difference strategy, how-
ever, manages to reveal the two anomalies with-
out distorting noise. The estimated magnitudes of
the VP anomalies are lower than the true anoma-
lies. This can be explained by the low frequen-
cies, and thus the wavelengths in the data. The
low frequencies result in that the anomalies are
smeared out in all directions. This behavior is
also visible in the estimated VS anomalies, but
here, due to the shorter wavelengths, the images
are sharper with magnitudes relatively closer to
the true anomalies.

Computational aspects

The nodes on the computer cluster used in this
study have 16 (two eight-core processors) cores
(Intel Xeon E5-2670, 2.6 GHz processor speed)

a)

b)

c)

d)

e)

f)

Figure 5. Inverted time-lapse images for VP using data without noise. (a) 1% time-lapse
effect using the sequential strategy, (b) 1% time-lapse effect using the data-difference
strategy, (c) 5% time-lapse effect using the sequential strategy, (d) 5% time-lapse effect
using the data-difference strategy, (e) 10% time-lapse effect using the sequential strat-
egy, (f) 10% time-lapse effect using the data-difference strategy.
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a)

b)

c)

d)

e)

f)

Figure 6. Inverted time-lapse images for VS using
data without noise. (a) 1% time-lapse effect using
the sequential strategy, (b) 1% time-lapse effect
using the data-difference strategy, (c) 5% time-
lapse effect using the sequential strategy, (d) 5%
time-lapse effect using the data-difference strat-
egy, (e) 10% time-lapse effect using the sequential
strategy, (f) 10% time-lapse effect using the data-
difference strategy.

a)

c)

b) Figure 7. The time-lapse data difference for a
pressure recording from a single cable for the
1% time-lapse change in VP and VS: (a) true,
(b) sequential strategy, and (c) data-difference
strategy. The same clip value is used in all plots.
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and a total memory of 32 GB. With optimal spreading of the work
to the nodes, such that each core computed one modeling and one
gradient, one iteration took approximately 1.5 h. The size of the
temporary data generated during one iteration was approximately
1500 GB. In total, 99% of the computing time was spent on the
modeling and gradient calculations, and the remaining time was
used on stacking the local gradients, calculating the objective func-
tional, and updating the model.

DISCUSSION

Conventional time-lapse methodology requires careful matching
of baseline and monitor data sets before and throughout the entire
processing sequence (Kristiansen et al., 2000), including poststack
matching. The resulting 4D data volumes are usually interpreted
qualitatively in terms of amplitude information (Landrø et al.,
1999). Measurements of time delays are to a certain degree used
to obtain quantitative velocity information (Landrø, 2002). The
TLFWI offers a completely new way of time-lapse processing
by aiming at computing differences in important parameters such

as wave velocity throughout the entire data volume as a function
of depth.
The noise-free examples given above show that, in principle, the

FWI approach can resolve velocity changes of the order of 1%.
Even though it is possible, in theory, to resolve even smaller
changes, there are fundamental limitations to the resolving power
even for perfect acquisition repeatability. The spatial resolution of
velocity changes can in principle be calculated using the Hessian
matrix (Fichtner and Trampert, 2011), which very roughly depends
on the frequency content of the source signature, the focusing power
of the acquisition geometry, and the overburden velocity model.
Due to the large computational cost of FWI, we are (at the moment)
forced to use the low-frequency end of the seismic spectrum, thus
limiting the accuracy. Conventional time-lapse processing can use a
much larger frequency spectrum and should in principle achieve
better resolution, but will also be limited by the acquisition geom-
etry in the same way as FWI. However, both methodologies depend
on the accuracy of the overburden velocity model that to a very large
extent determines the resolving power. There is now considerable
evidence that FWI has the ability to estimate accurate velocity mod-
els (Sirgue et al., 2009), thus counteracting the low-frequency
problem.
Conventional processing aims at estimating reflection coefficients

and smooth velocity models, whereas FWI sets a more ambitious goal
of trying to add detailed velocity information to the smooth models
obtained from tomography. Parametrization of the forward problem is
important because sensitivity and coupling between different types of
parameters have a large effect on the final solution. Multicomponent
data using VP and VS seem to be a natural choice because the pres-
sure and the vertical components of the particle velocity contain
velocity information through P-wave traveltime and the horizontal
component of the particle velocity contains S-wave information
through converted (PS) waves. Estimating VP and VS simultaneously
ensures that the final velocity models are consistent, which is usually
a problem in conventional processing of OBC data (Szydlik et al.,
2007; Mathewson et al., 2013). The disadvantage is that density is
difficult to estimate due to the strong coupling to VP and VS at small
and intermediate offsets.
From a computational point of view, it is favorable to invert si-

multaneously for VP and VS because the number of required iter-
ations is kept at a minimum. However, because the model space is
increased in a simultaneous inversion compared to, for instance, a
sequential inversion, it is more likely that the inversion gets stuck in
local minima, particularly with real data and more complex media.
In our preliminary test runs, we find that the weighting matrix
(equation 6) has a major impact on the inversion results. This can
be explained by the fact that there is a different sensitivity of VP and
VS with respect to the data. Another subject of discussion is the
parametrization of the inversion which also has impact on the re-
sults (Mora, 1987; Prieux et al., 2013a). Thus, multiparameter in-
version is a challenging task and is still a topic of research (Operto
et al., 2013; Prieux et al., 2013b; Raknes and Arntsen, 2014b).
The quality of FWI results depend on the initial model, but con-

ventional processing suffers from the same problem, and this cannot
be viewed as a major drawback. The examples shown in the pre-
ceding section show that by using initial velocity models accurate
enough to avoid cycle skipping, the final solution is reasonably ac-
curate. An important observation is the presence of strong surface
waves in the data sets due to the high contrast between the water

a)

b)

Figure 8. Normalized objective functionals for the monitor inver-
sions without noise in the data. (a) Sequential strategy and (b) data-
difference strategy (solid line: 1% change, dashed line: 5% change,
dotted line: 10% change).
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layer and the sea bottom. The surface waves, particularly, the low-
frequency Scholte waves, were complicated to estimate using FWI.
As a result, the initial model had to be close to the true model in the
parts close to the sea floor, such that the surface waves were ap-
proximated correctly. Wrong estimates of the shallow parts lead
to convergence into a local minimum far from the true solution.
Industrial time-lapse data are not noise free and contain (often

serious) errors due to the differences in acquisition geometries
and source characteristics between baseline and monitor surveys.
Much of the effort in conventional time-lapse processing is spent
trying to compensate and rectify these errors. When it comes to us-

ing the FWI method, little experience has been gained, and the
knowledge of the sensitivity of the method to repeatability problems
is not widespread. However, as with conventional processing, ac-
quisition differences can be attacked prior to inversion by data in-
terpolation. Extensive synthetic testing can to a certain degree give
some insight, but would, due to the computational effort involved,
be prohibitively expensive. As an inexpensive alternative, we have
shown results when colored noise is added to the data, and it is clear
that time-lapse effects can be estimated even at fairly low S/Ns. It is
worth mentioning that the Gaussian noise used here is not a realistic
type of noise. A more realistic noise type could have been achieved

a) b)

c)

Figure 9. (a) Data without noise, (b) data with
S∕N ¼ 2.0, and (c) data with S∕N ¼ 5.0. The
same clip value is used in all plots.

a)

c)

b) Figure 10. (a) True time-lapse data difference
without noise, (b) time-lapse data difference with
S∕N ¼ 2.0, and (c) time-lapse data difference with
S∕N ¼ 5.0. The same clip values are used in all
plots.
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a) c)

b) d)

Figure 12. Inverted time-lapse images for VS for
data with noise (top row: sequential strategy, bottom
row: data-difference strategy): (a) S∕N ¼ 5.0,
(b) S∕N ¼ 5.0, (c) S∕N ¼ 2.0, and (d) S∕N ¼ 2.0.

a)

d)b)

c)Figure 11. Inverted time-lapse images for VP for
data with noise (top row: sequential strategy, bottom
row: data-difference strategy): (a) S∕N¼5.0,
(b) S∕N ¼ 5.0, (c) S∕N ¼ 2.0, and (d) S∕N ¼ 2.0.

a) b)Figure 13. Horizontal slice through the small-size
time-lapse model at (a) z ¼ 500 m and (b) z ¼
575 m. The magnitude for the VP anomaly is
0 − 152 and 0 − 96 m∕s for the VS anomaly.

R312 Raknes and Arntsen

D
ow

nl
oa

de
d 

09
/0

3/
15

 to
 1

29
.2

41
.6

9.
56

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SE

G
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 T

er
m

s 
of

 U
se

 a
t h

ttp
://

lib
ra

ry
.s

eg
.o

rg
/



by introducing effects related to the coupling of the receivers to the
seafloor and differences in the rotation of the particle velocity sen-
sors (geophones). In general, it is difficult to simulate real-world
noise because it is caused by a large variety error sources.
In principle, TLFWI should be able to compensate for some of

the acquisition differences usually found between baseline and
monitor surveys. If a full Gauss-Newton approach is used for

the inversion, information contained in the Hessian matrix is able
to compensate to a certain degree for the acquisition imprint (Vir-
ieux and Operto, 2009), which is supported with experience from
least-squares migration (Nemeth et al., 1999). In our examples, we
use the gradient-based L-BFGS method, which only partially ex-
ploits the Hessian matrix. If the repeatability in the baseline and
monitor data sets is poor, then the data-difference strategy will in-

a)

b)

c)

d)

Figure 14. Horizontal time-lapse slices at
z ¼ 500 m for the small size time-lapse model:
(a) VP using the sequential strategy, (b) VP using
the data-difference strategy, (c) VS using the se-
quential strategy, and (d) VS using the data-differ-
ence strategy.

a) c)

b) d)

Figure 15. Horizontal time-lapse slices at
z ¼ 575 m for the small size time-lapse model:
(a) VP using the sequential strategy, (b) VP using
the data-difference strategy, (c) VS using the se-
quential strategy, and (d) VS using the data-differ-
ence strategy.
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troduce an error in the modified data set that the Hessian matrix is
not able to compensate for because this error is not due to simpli-
fications in the method itself.
In standard monitoring setups, the location of the reservoir is

often well known, and it may be used to constrain the inversion.
This prior information may be incorporated either by introducing a
model term in the objective functional (Asnaashari et al., 2013) or
by constraining the gradient itself (Zhang and Huang, 2013). An-
other option is to use the local migration regularization (Raknes and
Arntsen, 2014a), which migrates the data differences to constrain
the model update. Using the above-mentioned methods, it is pos-
sible to reduce the time-lapse artifacts in the images.
The goal with this study is to compare the sequential and data-

difference TLFWI strategies in 3D, and thus give insights into find-
ing the best strategy for performing TLFWI. From our examples, it
is clear that the data-difference strategy is favorable, particularly for
cases in which the amplitudes of the time-lapse changes sought for
are small. The reason for the success is that the monitor inversion is,
as long as the convergence of the baseline inversion is sufficient
close to the true solution, not trying to fit the nonperfect baseline
model and the time-lapse anomalies at the same time. From this
argument, it follows that having baseline and time-lapse variations
as simultaneous unknowns in the sequential strategy yields a more
difficult inverse problem to solve than inverting for the differences
in the data-difference strategy.
The disadvantage with the data-difference strategy is that it has

strong requirements on the repeatability of the data sets because the
receivers must be positioned on identical points in space in both
surveys to consider the data differences. In a permanent OBC setup,
this is easy, whereas using conventional streamer geometries it is
more difficult. In addition, it is difficult in practice to put the source
on identical positions in a full-scale survey. Furthermore, factors
related to the acquisition (i.e., different equipment, time of the year
of the acquisitions, weather conditions) of the data sets may cause
differences between the baseline and monitor data sets that may be
interpreted as real time-lapse signals because Δεr in equation 9 may
become larger in magnitude than the time-lapse signals. Moreover,
in some settings, Δεn in equation 9 may become as large or even
larger in magnitude than the time-lapse signal yielding false time-
lapse changes in the elastic parameters. Therefore, the data differ-
ence based inversion strategy may not be used in cases in which the
time-lapse data sets are not acquired using the same source-receiver
geometries, or in which the repeatability in the data sets is not suf-
ficiently good. In these cases, the sequential strategy is the best ap-
proach. It is also worth mentioning that once the data difference is
computed it cannot be undone and all errors are locked in the re-
sulting data set.
It remains a task for the future to determine the full characteristics

of FWI when it comes to acquisition errors. It is clear from the dis-
cussion above that to release the full potential of TLFWI, data with
a broad frequency range have to be used. Unfortunately, the amount
of computer power needed scales as the frequency to the fifth
power, implying that presently this cannot be done efficiently.

CONCLUSION

We have investigated two strategies for performing time-lapse
FWI using synthetic ocean-bottom multicomponent seismic time-
lapse data. A 3D isotropic elastic FWI implementation was used
to investigate the sensitivity with respect to the magnitude and

the physical size of the time-lapse anomalies in the P- and S-wave
velocity models, and the noise level in the data. Both strategies were
able to detect the time-lapse anomalies, but the strategy that focuses
on the differences in the data is preferable due to fewer artifacts in
the final time-lapse images. This strategy depends on compatible
source and receiver geometries in the data sets, and sufficient con-
vergence of the inversion of the baseline data set.
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